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Sample Complexity in Learning Distributions

Setting:
Given an unknown distribution D defined over a finite domain [n]. We can obtain a collec-
tion of independent and identically distributed (i.i.d.) samples X1, X2, . . . , Xm drawn from
D.

• One goal is to learn an approximate distribution of D, so that the total variation
distance (dTV ) from D is within ε.

• Another potential task is to perform property testing on the distribution D, such
as testing whether D satisfies certain properties.

• We can also estimate parameters, functionals, or statistics of D.

Sample Complexity for Learning D:

We can approximately learn D within total variation distance ε using m = Θ
(
n+log 1

δ
ε2

)
samples, with probability at least 1− δ.

m = Θ

(
n+ log 1

δ

ε2

)
Here, the sample size m grows linearly with the domain size n and includes an additive

log 1
δ term, rather than a multiplicative term.
Note: This is similar to the sample size calculation that appears in the Johnson-

Lindenstrauss Lemma.

Upper Bound on Sample Complexity

Algorithm 10.1 Empirical Distribution Estimation

Input: i.i.d. samples X1, X2, . . . , Xm from distribution D Sample size: m = Θ
(
n+log 1

δ
ε2

)
Construct the empirical distribution D̂ where each probability D̂i is defined as:

D̂i =
#{Xj = i}

m

Output: An estimate D̂ of the true distribution D
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Theorem 10.2. Algorithm 10.1, given input m = O
(
n+log 1

δ
ε2

)
samples, returns an esti-

mated distribution D̂ such that the total variation distance between D̂ and D satisfies

dTV (D̂,D) ≤ ε

with probability at least 1− δ.

Note: The O
(
n+log 1

δ
ε2

)
sample complexity is linear in n, with an additive log 1

δ term.

The sample complexity expression can also be interpreted as: Θ

(
1
ε2

log 1
δ
2n

)
, where log 2n

δ =

log 2n + log 1
δ .

Proof. Observe that dTV (D̂,D) ≥ ε if and only if there exists some subset S ⊆ [n] such
that D̂(S)−D(S) ≥ ε.

We want to show that, with probability at least 1− δ,

∀S ⊆ [n], D̂(S)−D(S) < ε.

We will apply a union bound over all S ⊆ [n].

• Fix a subset S ⊆ [n]:

D̂(S) =
1

m

∑
j

1{Xj ∈ S}.

Then, the probability that D̂(S)−D(S) ≥ ε is

P
(
D̂(S)−D(S) ≥ ε

)
= P

 1

m

∑
j

1{Xj ∈ S} − E[D̂(S)] ≥ ε


By Hoeffding’s inequality, this is bounded by

≤ e−Θ(mε2).

• Determining the Sample Size: we choose

m = Θ

(
1

ε2
log

1

δ/2n

)
.

• Applying the Union Bound: By the union bound, we have

P
(
dTV (D̂,D) ≥ ε

)
= P

(
∃S ⊆ [n] : D̂(S)−D(S) ≥ ε

)
≤ 2n · δ

2n
= δ.

Note: The additive log 1
δ term (as opposed to multiplicative) is due to the use of a

union bound over many events, similar to the approach in Johnson-Lindenstrauss Lemma.
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Lower Bound on Sample Complexity

We want to show that Ω
(
n+log 1

δ
ε2

)
samples are necessary for learning the distribution within

total variation distance ε.
**Approach** To prove this lower bound, we split it into two parts: 1. Show that Ω

(
n
ε2

)
samples are necessary. 2. Show that Ω

(
log 1

δ
ε2

)
samples are necessary.

These two bounds together imply a lower bound of

Ω

(
max

(
n

ε2
,
log 1

δ

ε2

))
≥ Ω

(
n+ log 1

δ

ε2

)
.

Proof. 1. For the Term Ω
(

log 1
δ

ε2

)
: - Consider the problem of distinguishing between two

Bernoulli distributions: Bernoulli
(

1
2 − ε

)
and Bernoulli

(
1
2 + ε

)
. - By Theorem 9.9, we have:

d2
H(Ber(

1

2
± ε)) = Θ(ε2).

- This means that Ω
(

log 1
δ

ε2

)
samples are required to distinguish these two distributions with

probability at least 1− δ.
2. For the Term Ω

(
n
ε2

)
: - we show that to learn the distribution over a domain of size

n requires at least Ω
(
n
ε2

)
samples.

Combining these results, we conclude that

Ω

(
n+ log 1

δ

ε2

)

samples are necessary for learning the distribution within total variation distance ε with
high probability.

Strategy for Lower Bound on Sample Complexity

To establish a lower bound of Ω
(
n
ε2

)
for sample complexity, we consider the following class

of distributions.
1. Define the probabilities:

p2i =
1− 100εzi

n
, p2i+1 =

1 + 100εzi
n

, zi ∈ {±1}.

Each distribution PZ is identified by an n
2 -length vector Z ∈ {±1}

n
2 .

2. Intuition: To learn the distribution PZ to within ε in total variation distance, one
must learn at least 99% of the zi’s. If even a small fraction (e.g., 1%) is incorrect, it
contributes significantly to the total variation distance.
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Informal Analysis

Consider a fixed ”bucket” Bi = {Y2i, Y2i+1}. Conditioning on Bi learning zi is equivalent
to distinguishing between two cases:

Ber

(
1− 100ε

2

)
vs. Ber

(
1 + 100ε

2

)
.

To distinguish between these two Bernoulli distributions with high probability, we need
Ω
(

1
ε2

)
samples.

However, a sample falls in Bi with probability 2
n , so overall we need Ω

(
n
ε2

)
samples to

learn the distribution.

Formal analysis

Lemma 10.3. Learning a distribution in the above class with probability at least 2
3 requires

Ω( n
ε2

) samples.

Proof. Consider an arbitrary algorithm A outputting Pw or just w, where w is a vector of
length n

2 in the form of z defined above.

Claim: Without loss of generality, A depends only on histogram

Yi =
∑
j

1{xj = i}

Proof of claim: consider an algorithm A′ that takes the histogram, generates a random
ordering of samples based on the histogram, and feed it into A. A′s input has exactly the
same distribution as D⊗m.

Consider drawing z uniformly at random, i.e. each zi is drawn iid from Ber
(

1
2

)
. We want

to analyze the number of wrong coordinates in w = A(Y1, . . . , Yn), that is,
∑

bucket i 1{wi 6=
zi}.
Note: zi is random, {xi} are random even conditioning on z, and w might be random even
conditioned on (x1, . . . , xm).

We want to prove that

P
(∑

1{wi 6= zi} > 0.01 · n
2

)
>

1

3

⇐⇒ P
(

# correct coordinates > 0.99 · n
2

)
<

2

3

Note that the sum
∑

1{wi 6= zi} is not a sum of independent terms, so we can’t use any
of the exponential tail bounds that we’ve seen before. The reason why it is not a sum of
independent terms is that:

• wi might depend on samples from buckets other than the ith bucket.

• The buckets themselves are correlated. In particular, any two distinct buckets i 6= j
are not independent. This is because the total samples need to sum up to m. (next
week we will see a trick called Poissonisation that resolves this issue)
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Goal: show that the expected number of correct coordinates ≈ 1
2 ·

n
2 for m = 1

100 ·
n
ε2

(which
means the number of incorrect coordinates will also be roughly a half). Then by Markov’s
we will be able to show that

P
(

# correct coordinates > 0.99 · n
2

)
≤

1
2

0.99
≤ 2

3

We compute

E

[∑
i

1{wi 6= zi}

]
=
∑
i

E
[
E
[
1{wi 6= zi} | B1, B2, . . . , Bn

2

]]
where Bi = the number of samples in bucket i = Y2i + Y2i+1.

Claim 10.4.

E
[
1{wi 6= zi} | B1, B2, . . . , Bn

2

]
≥ 1

2
−O(ε) ·

√
Bi

Assuming Claim 10.4, then we can compute the lower bound proof:

E

[∑
i

1{wi 6= zi}

]
≥
∑
i

1

2
−O(ε) · E

√
Bi

=
n

4
−O(ε) ·

∑
i

E
√
Bi

≥ n

4
−O(ε) ·

∑
i

√
EBi by Jensen’s

=
n

4
−O(ε) ·

∑
i

√
2m

n

= n

(
1

4
−O(ε) ·

√
2m

n

)

If m = n
O(ε2)

, then last line ≈ n
4 = 1

2 ·
n
2 , then we are done, by applying Markov’s, as stated

earlier.

So what remains is to show that Claim 10.4 is correct.

Proof of Claim 10.4:

Rewrite
E
[
1{wi 6= zi} | B1, B2, . . . , Bn

2

]
further as

E
[
E
[
1{wi 6= zi} | B1, B2, . . . , Bn

2
, Z−i, samples outside bucket i

]]
where z−i means all zj with j 6= i, and the outer expectation is over z−i, samples outside
bucket i, conditioned on B1, . . . , Bn

2
.

Fix z−i, samples outside bucket i, and Bi, then algorithm A just takes Bi samples in bucket
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i and outputs the vector w (we only care about wi, and in particular we want a lower bound
for P (wi 6= zi) ). In other words, A takes Bi samples from Ber

(
1−100εzi

2

)
and outputs wi,

hoping that wi = zi. This is similar to distinguishing between coin flips of two distributions,
except that this time zi is uniformly drawn, instead of adversarially picked.

Thus, it suffices to prove the following claim:

Claim 10.5. Pick q = 1±100ε
2 uniformly (denoted as q+, q−, respectively). Take m samples

iid. from Ber(q) (m corresponds to Bi in previous parts). Then for any algorithm A′,

P
(
A′(samples) 6= q

)
≥ 1

2
−O(ε) ·

√
m

Proof of Claim 10.5:
By Theorem 11.1, we know

P
(
A′ = q+ | q = q+

)
− P

(
A′ = q+ | q = q−

)
≤ dTV

(
Ber(q+)⊗m,Ber(q−)⊗m

)
L.H.S. =

1− P
(
A′ = q− | q = q+

)
− P

(
A′ = q+ | q = q−

)
R.H.S. ≤ (by Fact 11.7)

√
m · dH (Ber(q+),Ber(q−)) =

√
m ·O(ε)

Now we have

1

2

(
1−
√
m ·O(ε)

)
≤ 1

2

(
P
(
A′ = q− | q = q+

)
+ P

(
A′ = q+ | q = q−

))
= P

(
A′ 6= q | q = Unif{q±}

)
which is exactly what we are trying to show.

Theorem 10.6. Any algorithm learning discrete distributions over [n] to within total vari-

ation distance error ε with probability at least 1− δ requires Ω
(
n+log 1

δ
ε2

)
samples.

Proof. Apply Lemma 10.3 and the lower bound Ω
(

log 1
δ

ε2

)
which we proved earlier.

DKW Inequality

We will end with stating the DKW Inequality, which concerns learning a distribution in
Kolmogorov distance.

Definition 10.7 (Kolmogorov Distance). `∞ distance between the CDFs

dK(p,q) = sup
x
|p (−∞, x]− q (−∞, x]|
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Theorem 10.8 (DKW Inequality). Given any distribution p on R (not necessarily dis-
crete), consider

p̂m = m-sample empirical CDF

Then
P (dK (p̂m,p) > ε) ≤ 2e−2me2

So to learn p within ε in dk, we only need O
(

log 1
δ

ε2

)
samples.
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