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Sample Complexity in Learning Distributions

Setting:

Given an unknown distribution D defined over a finite domain [n]. We can obtain a collec-
tion of independent and identically distributed (i.i.d.) samples X1, Xs,..., X,, drawn from
D.

e One goal is to learn an approximate distribution of D, so that the total variation
distance (dry) from D is within e.

e Another potential task is to perform property testing on the distribution D, such
as testing whether D satisfies certain properties.

e We can also estimate parameters, functionals, or statistics of D.

Sample Complexity for Learning D:
. s _ . . log 1
We can approximately learn D within total variation distance € using m = © (%)

samples, with probability at least 1 — 6.

log 1
m:@<n+;ga>
€

Here, the sample size m grows linearly with the domain size n and includes an additive
log% term, rather than a multiplicative term.

Note: This is similar to the sample size calculation that appears in the Johnson-
Lindenstrauss Lemma.

Upper Bound on Sample Complexity

Algorithm 10.1 Empirical Distribution Estimation

1
Input: ii.d. samples X1, X9, ..., X,, from distribution D Sample size: m = © (%)

Construct the empirical distribution D where each probability D; is defined as:
D, = #{X; =i}
m

Output: An estimate D of the true distribution D




1
Theorem 10.2. Algorithm 10.1, given input m = O <%) samples, returns an esti-
mated distribution D such that the total variation distance between D and D satisfies

dry (f)a D) <e

with probability at least 1 — §.

1
Note: The O (”“‘;’g ‘5> sample complexity is linear in n, with an additive log% term.

€
The sample complexity expression can also be interpreted as: © <512 log r}n) , where log % =

1
log 2" + log 5.

Proof. Observe that dry (D, D) > e if and only if there exists some subset S C [n] such
that D(S) — D(S) > e.
We want to show that, with probability at least 1 — 4,

VS C[n], D(S)—D(S) <e.
We will apply a union bound over all S C [n].
e Fix a subset S C [n]:
D(S) = ;Zn{xj € S).
J
Then, the probability that D(S) — D(S) > € is

P(D(S) - D(S) > c) =P %Z (X; €S} —E[D(S)] >

J
By Hoeffding’s inequality, this is bounded by

< 6—@(77162) .

e Determining the Sample Size: we choose

1 1

e Applying the Union Bound: By the union bound, we have

P (drv(D.D) > ) =B (35 C ] : D(S) ~ D(5) > ¢) <2 2 s

Note: The additive log% term (as opposed to multiplicative) is due to the use of a
union bound over many events, similar to the approach in Johnson-Lindenstrauss Lemma.



Lower Bound on Sample Complexity

log + . T 1
We want to show that (2 (%) samples are necessary for learning the distribution within

total variation distance e.

** Approach™* To prove this lower bound, we split it into two parts: 1. Show that Q (6%)

log L
samples are necessary. 2. Show that {2 ( Off) samples are necessary.

These two bounds together imply a lower bound of

1 1
€ € €

log *
Proof. 1. For the Term (2 ( 72

€

): - Consider the problem of distinguishing between two

Bernoulli distributions: Bernoulli (% — e) and Bernoulli (% + e). - By Theorem 9.9, we have:
2 1 2
dH(Ber(§ te)) =0(e).

- This means that € 1052%
probability at least 1 — 4.

2. For the Term Q (e%) - we show that to learn the distribution over a domain of size
n requires at least ) (6%) samples.

Combining these results, we conclude that

QO (n—l—lgog};)
€

samples are necessary for learning the distribution within total variation distance e with
high probability.

) samples are required to distinguish these two distributions with

O]

Strategy for Lower Bound on Sample Complexity

To establish a lower bound of 2 (E%) for sample complexity, we consider the following class
of distributions.
1. Define the probabilities:

P2i = ﬂ» P2i+1 = w, z; € {£1}.
n n
Each distribution Py is identified by an -length vector Z € {+1}2.
2. Intuition: To learn the distribution Pz to within € in total variation distance, one
must learn at least 99% of the z;’s. If even a small fraction (e.g., 1%) is incorrect, it
contributes significantly to the total variation distance.



Informal Analysis

Consider a fixed "bucket” B; = {Y2;, Y2;11}. Conditioning on B; learning z; is equivalent
to distinguishing between two cases:

1-1 1+1
Ber <2006) vs. Ber <+2006> .

To distinguish between these two Bernoulli distributions with high probability, we need
Q (}2) samples.
However, a sample falls in B; with probability %, so overall we need {2 (6%) samples to

learn the distribution.

Formal analysis

Lemma 10.3. Learning a distribution in the above class with probability at least % requires
n

Q(Z) samples.

Proof. Consider an arbitrary algorithm A outputting P, or just w, where w is a vector of
length 5 in the form of z defined above.

Claim: Without loss of generality, A depends only on histogram
Y; = Z ]l{l'j = Z}
J

Proof of claim: consider an algorithm A’ that takes the histogram, generates a random
ordering of samples based on the histogram, and feed it into A. A’s input has exactly the
same distribution as D®™.

Consider drawing z uniformly at random, i.e. each z; is drawn iid from Ber (%) We want
to analyze the number of wrong coordinates in w = A(Y1,...,Y},), that is, >y et s TH{wi #
Zi}.

Note: z; is random, {x;} are random even conditioning on z, and w might be random even
conditioned on (x1,...,Zy).

We want to prove that
n 1
i (Z 1{w; # 2} > 0.01 - 5) > 3

<~ P (# correct coordinates > (.99 - g) < g

Note that the sum Y 1{w; # z;} is not a sum of independent terms, so we can’t use any
of the exponential tail bounds that we’ve seen before. The reason why it is not a sum of
independent terms is that:

e w; might depend on samples from buckets other than the ith bucket.

e The buckets themselves are correlated. In particular, any two distinct buckets i # j
are not independent. This is because the total samples need to sum up to m. (next
week we will see a trick called Poissonisation that resolves this issue)



Goal: show that the expected number of correct coordinates ~ % -5 form = 1—(1)0 - %3 (which

means the number of incorrect coordinates will also be roughly a half). Then by Markov’s
we will be able to show that

1
P (# correct coordinates > 0.99 - g) <2 <

We compute

]S tton 1] = B [8 (10020

where B; = the number of samples in bucket ¢ = Yo; + Y5;41.

Claim 10.4.
E []l{wi # 2} | B1,BQ,~-7Bg} >

~0(e)- VB

l\.’)\r—t

Assuming Claim 10.4, then we can compute the lower bound proof:

Z]l{w, 22}1_22—0 ‘E+/B;

i

-2 o )3 EVE
> n_ O(e Z v E B; by Jensen’s

4

n [2m
1 2m

Ifm= ﬁ, then last line =~ 7 = % - 4, then we are done, by applying Markov’s, as stated

earlier.
So what remains is to show that Claim 10.4 is correct.

Proof of Claim 10.4:

Rewrite
E[t{w; # %} | By, Ba...., By]

further as
E [IE []l{wi # zi} | B1,Ba,. .., Bn,Z_;, samples outside bucket z”

where z_; means all z; with j # ¢, and the outer expectation is over z_;, samples outside
bucket ¢, conditioned on By, ... ,B%.

Fix z_;, samples outside bucket i, and B;, then algorithm A just takes B; samples in bucket



i and outputs the vector w (we only care about w;, and in particular we want a lower bound
for P (w; # z;) ). In other words, A takes B; samples from Ber (%) and outputs wj,
hoping that w; = z;. This is similar to distinguishing between coin flips of two distributions,
except that this time z; is uniformly drawn, instead of adversarially picked.

Thus, it suffices to prove the following claim:

Claim 10.5. Pick q = % uniformly (denoted as q,q—, respectively). Take m samples
iid. from Ber(q) (m corresponds to B; in previous parts). Then for any algorithm A’,

P (A'(samples) # q) > = — O(e) - v/m

1
2

Proof of Claim 10.5:
By Theorem 11.1, we know

P(A" =qilg=qr) —P (A" =qr|q=q-) <drv (Ber(qy)®™, Ber(q-)*™)
LHS. =
1-P (A =g [g=gt) —P(4 =qs]g=0-)
R.H.S. < (by Fact 11.7)
vm - dy (Ber(g), Ber(q-)) = v/m - O(e)

Now we have

5 (- vim-0() <

[a—

3 (P(A =g lg=q4)+P(A =g |g=0q))
P (A" # q|q = Unif{qs})

which is exactly what we are trying to show.
O]

Theorem 10.6. Any algorithm learning discrete distributions over [n] to within total vari-

i
ation distance error € with probability at least 1 — § requires (2 ("*l‘;g 5) samples.

1
Proof. Apply Lemma 10.3 and the lower bound 2 (10525 ) which we proved earlier. O

DKW Inequality

We will end with stating the DKW Inequality, which concerns learning a distribution in
Kolmogorov distance.

Definition 10.7 (Kolmogorov Distance). (o distance between the CDFs

dx(p,q) = sup Ip (—00, 7] — q(—00, ]|



Theorem 10.8 (DKW Inequality)

. Given any distribution p on R (not necessarily dis-
crete), consider

Pm = m-sample empirical CDF
Then
P (dk (Pm; P)

> ) —2me2
So to learn p within € in di, we only need O ( o8

M\H

) samples.



